If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-49Y^2+16
We move all terms to the left:
-(-49Y^2+16)=0
We get rid of parentheses
49Y^2-16=0
a = 49; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·49·(-16)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*49}=\frac{-56}{98} =-4/7 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*49}=\frac{56}{98} =4/7 $
| 2(x-3)-4x8=-8 | | 13v+2v-13v-v=19 | | 16w+5w-17w=8 | | 13g-8g+g+4g=10 | | 2(0.51(0.49))=x | | 14=-3n+2 | | (20-2x)(15-2x)=234 | | -16-11q=-18q-16+7q | | -41=5x+6 | | Y=16/49x^2 | | 2x+1.50x=500 ≤360 | | p+38=192 | | -9j-19=-2j+8-16j | | V=3.14r^2×10 | | 9a-5-8a=5a+10-3a | | 9a-5-8a=5a+10-39 | | q/3-4=6 | | (2x+4)/(12x)=1/4 | | -14+20j=9(3j-14) | | t+5-3=8+6 | | 5+11g=g+4 | | 29.8+j=96.4 | | 4j+2(j+1.5)=96 | | -19k+7=-14-16-19k | | -n-18=n-18-2n | | 8m+4m=-48 | | -1+3h=3h-1 | | 9(2x+3)=-4(x-3) | | p2-3=5 | | 9x+2=−38 | | -16r-1-19=-16r-20 | | -5(a-11)=70 |